
Lecture 18 : Poisson Processes – Part II

STAT205 Lecturer: Jim Pitman Scribe: Matias Damian Cattaneo <cattaneo@econ.berkeley.edu>

18.1 Compound Poisson Distribution

We begin by recalling some things from last lecture.

Let X1, X2, ... be independent and identically distributed random variables with dis-
tribution F on R; that is:

F (B) = P[X ∈ B]

Let Nλ be a Poisson random variable with mean λ; that is:

P[Nλ = k] =
λne−λ

k!
, n = 0, 1, 2, . . . .

Theorem 18.1 Let S be the sum of a Poisson random number of i.i.d. random vari-
ables; that is:

S =

Nλ
∑

i=1

Xi.

Let L(B) = λF (B) for B ∈ B, where L is a positive measure on R. Then the
distribution of S is determined by its characteristic function:

E
[

eitS
]

= exp

{
∫

R

(

eitx − 1
)

L(dx)

}

.

Remark: Call this distribution of S compound Poisson with parameter L (denoted
by CP (L)) and observe that it is ∞-divisible since:

CP (L) ∗ CP (M) = CP (L + M) ,

so the convolution n-th root of CP (L) is CP
(

L
n

)

.

Interpretation of L: Recall that Poisson point process ←→ counting measure, and
we have

N(B) =

Nλ
∑

i=1

1{Xi ∈ B} .
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That is, N(B) is the number of values 1 ≤ i ≤ Nλ with Xi ∈ B. Observe

N(R) = Nλ ∼ Poisson(λ)

What is the distribution of N(B)? Apply the previous theorem with Xi replaced by
1{Xi ∈ B}. So we have

E
[

eitN(B)
]

= exp
{(

eit − 1
)

L(B)
}

,

so N(B) ∼ Poisson(L(B)).

More generally for B1, B2, ..., Bm; m disjoint sets we can compute, by the same argu-
ment,

E

[

ei
P

m

k=1
tkN(Bk)

]

=

m
∏

k=1

E
[

eitkN(Bk)
]

,

and observe that the LHS is the multivariate characteristic function of the vector
(N(B1) , N(B2) , ..., N(Bm)) at (t1, t2, ..., tm), and the RHS is the multivariate char-
acteristic function of a collection of independent random variables with a Poisson
distribution. Consequently, by the uniqueness theorem for multivariate characteris-
tic function (see text) we conclude that N(B1) , N(B2) , ..., N(Bm) are independent
Poisson variables.

18.2 Summary so far

Now we summarize our work so far.

Let X1, X2, ... be i.i.d. F . Let Nλ ∼ Poisson(λ), independent of X1, X2, .... Let
N(B) =

∑Nλ

i=1 1{Xi ∈ B}, the point process counting values in B up to Nλ. Then
(N(B) , B ∈ Borel) is a Poisson random measure with mean measure L, meaning
that if B1, ..., Bm are disjoint Borel sets, (N(Bi), 1 ≤ i ≤ m) are independent with
distributions Poisson(L(Bi)) for 1 ≤ i ≤ m, respectively.

Example 18.2 (From previous lecture) Let 0 < T1 < T2 < ... be a sum of indepen-
dent Exponential(λ) variables. So Nt =

∑∞
i=1 1{Ti ≤ t} ∼ Poisson(λt). Then we

see that (Nt, 0 ≤ t ≤ T ) has the same distribution as (N [0, t] , 0 ≤ t ≤ T ) where

N [0, t] =

Nλ
∑

i=1

1{Xi ≤ t}

for X1, X2, ... ∼ U [0, T ].

This is an example of a famous connection between sums of exponentials and uniform
order statistics. Examples can be found in many texts, including [1].
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These are Poisson tricks!

18.3 Computations with CP

Now we discuss some computations with CP (L). Think about this: we have a Poisson
scatter with mean intensity L, say X1, X2, ..., Xn. Let λ = L(R). We have

S =

Nλ
∑

i=1

Xi =

∫

xN(dx)

and recall that

N(B) =

Nλ
∑

i=1

1{Xi ∈ B} ∼ Poisson(L(B))

and also

N(·) =

Nλ
∑

i=1

δXi
(·)

∫

f(x) N(dx) =

Nλ
∑

i=1

f(Xi)

Now we compute (You check details):

E[S] = E

[
∫

xN(dx)

]

=

∫

xE[N(dx)] =

∫

xL(dx)

V[S] = V

[
∫

xN(dx)

]

= V

[

∑

...
]

= ... =

∫

x2L(dx)

Example 18.3 Consider

L =
∑

i

λiδXi

N(·) =
∑

i

NiδXi
(·)

where Ni ∼ Poisson(λi) and as i varies these are independent. Now we have:

S =

∫

xN(dx) =
∑

i

xiN(xi)

E[S] =
∑

i

xiλi =

∫

xL(dx)

V[S] =
∑

i

x2
i λi =

∫

x2L(dx)
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Theorem 18.4 (L-K) Every ∞-divisible distribution on R is a weak limit of shifted
CP distributions.

Look at the characteristic function of a centered CP distribution to see something
new: take S ∼ CP (L) and look at (S − E[S]). Assuming that

∫

|x|L(dx) < ∞, we
have

E
[

eit(S−E[S])
]

= exp{−itE[S]} exp

{
∫

(

eitx − 1
)

L(dx)

}

= exp

{
∫

(

eitx − 1− itx
)

L(dx)

}

and

E
[

(S − E[S])2] =

∫

x2L(dx)

from before.

Observe that this formula defines a characteristic function for every positive measure
L on R with L(−1, 1)c = 0 and

∫ 1

−1
x2L(dx) <∞. You can easily check this; see texts

such as [1]. This leads to the general L-K Formula.

18.4 More details on Lévy Measure

Definition 18.5 A measure L on R is a Lévy measure if it has the following prop-
erties:

1. L{(−ε, ε)c} < +∞, for all ε > 0.

2. L{0} = 0.

3.
∫ 1

−1
x2L(dx) < +∞.

For such an L, σ2 ≥ 0, c ∈ R, define the Lévy-Khinchine exponent in the following
way:

ΨL,σ2,c(t) =

∫

(

eitx − 1− itτ(x)
)

L(dx)−
1

2
σ2t2 + itc,

where τ(x) is the truncation function defined by τ(x) = x1|x|≤1 + 1x>1 − 1x<1.

Theorem 18.6 Two important results:

1. eΨ(t) is an infinitely divisible characteristic function.
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2. eΨ(t) determines L, σ2, c uniquely.

Before we prove this theorem, we consider a few examples.

Example 18.7 1. Consider a point mass δc at c. Its characteristic function is
eitc, and we see that itc = Ψ0,0,c(t).

2. Consider now a normal distribution N(c, σ2). Its characteristic function is
eitc−σ2t2/2 and it is easy to see that Ψ(t) = itc− σ2t2/2 corresponds to (0, σ2, c).

3. Now, let N be a Poisson random measure. For each f ≥ 0, we have

E
(

e−θ
R

fdN
)

= exp

(
∫

(

e−θf(x) − 1
)

µ(dx)

)

If µ is bounded measure, take θ = −it,

E
(

eit
R

fdN
)

= exp

(
∫

(

eitf(x) − 1
)

µ(dx)

)

.

Let L(dy) = µ{x : f(x) ∈ dy} (restricted to {0}c). For those who doesn’t
like to see dy’s outside the integral sign, the definition of L could be L(B) :=
µ(f−1(B)).

Then E
(

eit
R

fdN
)

= exp
(∫

(eity − 1)L(dy)
)

. Here we can recognize the enemy
from the beginning of the lecture, and the characteristic function of

∫

fdN is
exp(ΨL,0,c) where c =

∫

τ(x)L(dx).

Proof: First, we will prove that eΨ(t) is a characteristic function, and the infinite
divisibility is obvious (n-th root is Ψ(L/n,σ2/n,c/n)). Fix t. Observe that for |x| < 1 we
have

eitx − 1− itτ(x) = eitx − 1− itx ≤ cx2t2 (18.1)

for |xt| small. Therefore, the integral converges because
∫ 1

−1
x2L(dx) < +∞ and

L{(−ε, ε)c} < +∞. Hence Ψ(t) is a well-defined complex number for all t ∈ R.

Second, since the product of characteristic functions is also a characteristic function
we may assume without loss of generality that σ2 and c are both 0. Let Ln be L
restricted to

(

− 1
n
, 1

n

)c
. Note that exp(ΨLn,0,0(t)) is a characteristic function: since Ln

is finite, exp(ΨLn,0,0(t)) is the characteristic function of a shifted compound Poisson
variable with parameter Ln. From 18.1 and the dominated convergence theorem we
see that

lim
n→∞

ΨLn,0,0(t) = ΨL,0,0(t).

Since exp is continuous function we immediately have that exp(ΨLn,0,0(t))→ exp(ΨL,0,0(t))
and it only remains to prove that Ψ(t) is continuous at 0 (in order to apply the Lévy
continuity theorem). This is left as an exercise for the reader. (The same dominated
convergence theorem will work.)
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