Lecture 18 : Poisson Processes — Part 11
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18.1 Compound Poisson Distribution

We begin by recalling some things from last lecture.

Let X1, X5, ... be independent and identically distributed random variables with dis-
tribution F' on R; that is:
F(B) =P[X € B|

Let N, be a Poisson random variable with mean A; that is:

)\ne—)\
k!

P[N, = k] = . n=01,2,....

Theorem 18.1 Let S be the sum of a Poisson random number of i.i.d. random vari-
ables; that is:

N

i=1

Let L(B) = AF(B) for B € B, where L is a positive measure on R. Then the
distribution of S is determined by its characteristic function:

E[e"] = exp{/R (e" —1) L(dx)}.

Remark: Call this distribution of S compound Poisson with parameter L (denoted
by C'P(L)) and observe that it is co-divisible since:

CP(L)«xCP(M)=CP(L+ M),
so the convolution n-th root of CP(L) is CP(£).
Interpretation of L: Recall that Poisson point process «— counting measure, and

we have
Ny

N(B)=> I{X; € B}.

1=1
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That is, N(B) is the number of values 1 < i < N, with X; € B. Observe
N(R) = N, ~ Poisson(\)

What is the distribution of N(B)? Apply the previous theorem with X; replaced by
1{X; € B}. So we have

E[eitN(B)} =exp{(e” — 1) L(B)},
so N(B) ~ Poisson(L(B)).

More generally for By, Bs, ..., B,,; m disjoint sets we can compute, by the same argu-
ment,

E[eiZ?:ltkN(Bw] _ ﬁE[eitkN(Bw] 7
k=1

and observe that the LHS is the multivariate characteristic function of the vector
(N(B1),N(Bs),...,N(By,)) at (t1,ta,...,ty), and the RHS is the multivariate char-
acteristic function of a collection of independent random variables with a Poisson
distribution. Consequently, by the uniqueness theorem for multivariate characteris-
tic function (see text) we conclude that N(By),N(Bs),..., N(B,,) are independent
Poisson variables.

18.2 Summary so far

Now we summarize our work so far.

Let Xy, X,,... be i.i.d. F. Let Ny ~ Poisson()), independent of X, X5, .... Let
N(B) = "™ 1{X; € B}, the point process counting values in B up to Ny. Then
(N(B), B € Borel) is a Poisson random measure with mean measure L, meaning
that if By, ..., By, are disjoint Borel sets, (N(B;), 1 < i < m) are independent with
distributions Poisson(L(B;)) for 1 < i < m, respectively.

Example 18.2 (From previous lecture) Let 0 < Ty < Ty < ... be a sum of indepen-
dent Exponential(\) variables. So Ny = Y72 1{T; <t} ~ Poisson(At). Then we
see that (N, 0 <t <T') has the same distribution as (N[0,t],0 <t <T) where

Ny

N[0,f] => 1{X; <t}

i=1
fOT Xl,XQ, e VY Z/{[O,T]

This is an example of a famous connection between sums of exponentials and uniform
order statistics. Ezamples can be found in many tests, including [1].
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These are Poisson tricks!

18.3 Computations with CP

Now we discuss some computations with C'P(L). Think about this: we have a Poisson
scatter with mean intensity L, say Xl, X, ..oy Xy Let A = L(R). We have

S = ZX /dex)

N(B) = i 1{X; € B} ~ Poisson(L(B))

i=1

and recall that

and also

N() = Z ox, ()

[ @ N = 350
Now we compute (You check details):

E[S] — El / xN(dx)} - / B[N (dz)] = / L(dx)
V[s] = V[/xN(dx)} :V[Z...] — .= /x2L(dx)

Example 18.3 Consider

L = ) \éx,

%

N() = 3 N ()

where N; ~ Poisson(\;) and as i varies these are independent. Now we have:

S = /xN (dx) le (z;)
le)\ —/xL dx)
fo)\i = /sz(dx)
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Theorem 18.4 (L-K) Every oo-divisible distribution on R is a weak limit of shifted
CP distributions.

Look at the characteristic function of a centered CP distribution to see something
new: take S ~ C'P(L) and look at (S — E[S]). Assuming that [ |z| L(dz) < oo, we
have

E[e"5B] = exp{—iﬂE[S]}exp{ / (e —1) L(dx)}
= exp{ / (e — 1 —itx) L(dx)}

E[(S - E[S])] = / 2L (dz)

and

from before.

Observe that this formula defines a characteristic function for every positive measure
L on R with L(—1,1)° = 0 and f_ll 2?L(dr) < co. You can easily check this; see texts
such as [1]. This leads to the general L-K Formula.

18.4 More details on Lévy Measure

Definition 18.5 A measure L on R is a Lévy measure if it has the following prop-
erties:

1. L{(—¢,¢)°} < 400, for all € > 0.
2. L{0} = 0.

3. [1 22 L(dzr) < +o0.

For such an L, 62 > 0, ¢ € R, define the Lévy-Khinchine exponent in the following
way:

. 1
U2 o(t) = / (e"* =1 —itr(z)) L(dx) — 502152 + itc,

where 7(z) is the truncation function defined by 7(z) = 215<1 + L1 — 1.

Theorem 18.6 Two important results:

1. €Y js an infinitely divisible characteristic function.
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2. ¥ determines L,o?, ¢ uniquely.
Before we prove this theorem, we consider a few examples.

Example 18.7 1. Consider a point mass 0. at c. Its characteristic function is
e, and we see that itc = W .(1).

2. Consider now a normal distribution N(c,0?). Its characteristic function is

=12 and it is easy to see that U(t) = itc — o2t2/2 corresponds to (0,02, ¢).

3. Now, let N be a Poisson random measure. For each f > 0, we have

E<e—9fde> — exp (/ (e 1) M(daj))

If i is bounded measure, take 6 = —it,

(e 11) — exp ( / (@) — 1) ,u(dx)) .

Let L(dy) = p{x : f(x) € dy} (restricted to {0}¢). For those who doesn’t
like to see dy’s outside the integral sign, the definition of L could be L(B) :=
u(f=H(B)).
Then E (e JiN) = exp([ (e — 1) L(dy)). Here we can recognize the enemy
from the beginning of the lecture, and the characteristic function of [ fdN is
exp(Vp0.) where c = [ 7(x)L(dz).
Proof: First, we will prove that e¥® is a characteristic function, and the infinite
divisibility is obvious (n-th root is Wy /5 02/n,c/m))- Fix t. Observe that for |z| < 1 we
have

e — 1 —itr(z) = ™ — 1 —itx < cx’t? (18.1)

for |zt| small. Therefore, the integral converges because f_11x2L(dx) < 400 and
L{(—¢,e)°} < +o0. Hence ¥(t) is a well-defined complex number for all ¢ € R.

Second, since the product of characteristic functions is also a characteristic function
we may assume without loss of generality that o2 and ¢ are both 0. Let L, be L
restricted to (—2,2)%. Note that exp(¥y, o0(t)) is a characteristic function: since L,
is finite, exp(¥y, 00(f)) is the characteristic function of a shifted compound Poisson
variable with parameter L,,. From 18.1 and the dominated convergence theorem we
see that

lim \DLn,QO(t) = \IJL,O,O(t)'

Since exp is continuous function we immediately have that exp(Vp,, 0.0(t)) — exp(Vr0,0(t))
and it only remains to prove that W(¢) is continuous at 0 (in order to apply the Lévy
continuity theorem). This is left as an exercise for the reader. (The same dominated
convergence theorem will work.) |
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